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Abstract—Radiation Hard technologies for electronics are
the conventional approach for survivability in high radiation
environments. This paper presents a novel approach based
on Evolvable Hardware. The key idea is to reconfigure a
programmable device, in-situ, to compensate, or bypass its
degraded or damaged components. The paper demonstrates
the approach using a JPL-developed reconfigurable device,
a Field Programmable Transistor Array (FPTA), which
shows recovery from radiation damage when reconfigured
under the control of Evolutionary Algorithims. Experiments
with total radiation dose up to 350kRad show that while the
functtonality of a variety of circuits, including a rectifier and
a Digital to Analog Converter implemented on a FPTA-2
chip is degraded/lost at levels before 100kRad, the correct
functionality can be recovered through the proposed
evolutionary approach. The Evolutionary Algorithm
controls the state of about 1,500 switches that determine
configurations on the FTPA-2 programmabie device.
Evolution is able to use the resources of the reconfigurable
cells, even radiation damaged components, to synthesize a
new solution.
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1. INTROPUCTION

Long-life space missions and exireme environments have
characteristics such as high radiation level (Europa Surface
and Subsurface mission, 5 MRad), high temperature {Venus
Surface Exploration and Sample Return mission, 460°C)
and low temperature (Titan in-situ mission, -180°C). Such
missions and environments have dictated the need for new
electronics technologies.

Electrons and protoss in space can cause permanent damage
in electronic devices that can lead to operational failure.
Particularly, Single Event Effects (SEE)} are radiation
induced errors in microelectronic  circuits caused when
charged particles lose energy by ionizing the medium
through which they pass, leaving behind a wake of electron-
hole pairs. These events can be either transient and non-
destructive (Single Event Upset) or hard and potentially
destructive events (Single Event Latchup).

One technique for environments with high levels of
radiation is the use of Radiation Hard technologies such as
Silicon on Insulator (SOI), which allows compensating for
the effect of radiation. However, the fabrication cost
associated with extreme environment electronics is high. In
this paper we will present another technigue, based on
Evolvable Hardware, for electronic survivability in high
radiation environments.

A reconfigurable chip developed at JPL, the FPTA-2 chip, is
used in the experiment described in this paper [20]. We
submitted this chip to radiation using JPL facilities,
applying a total dose ranging up froem [0kRads up to
75kRads at a time and a cumulative dose up to 350kRads.
These parts are not radiation hardened. When the chip was
back from the radiation chamber, the permanent radiation
induced faults (single event latch-up) caused a deterioration
in the behavior of some circuits (D/As, filters, rectifiers)
previously downloaded/programmed oato the chip. We
show that the correct functionality of these circuits can be
recovered using Evolutionary Algorithms. The Evolutionary
Algorithms conirol the state of about 1,500 switches, Using
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a population of about 500 candidates and after running the
Evolutionary process for about 200 generations, the correct
functionality i1s recovered. Evolution is able to use the
resources of the reconfigurable cells, even the radiation
damaged components, to synthesize a new solution.

The results indicate that using Evolvable Hardware
technology we can design and develop electronic
components and systems that are inherently insensitive to
radiation induced faults by using on-board evolution in
hardware to achieve fault-tolerant and highly reliable
systems. The long term results of the proposed research
would allow electronics to adapt to an extreme environment
and long mission duration.

A number of researchers in the literature have examined the
effect of radiation on CMOS devices [1,2]. These could be
classified into those researchers who studied the effect of
radiation on various cells and macro-blocks fabricated in
silicon [3-9] or those who considered the design of radiation
hardened components and cell libraries [10-14]. Works on
studying the impact of radiation have considered custom
implementation and conventional digital FPGA platforms
such as Xilinx [15-19]. These works have been focusing on
studying both total dose radiation effects, where the effect is
permanent, and Single Event Upsets (SEU)s, where
individual bits in memory elements flip when exposed to
certain quantity of radiation.

However, most of these researchers seem to have focused
on technologies which are above 0.5 micron and hence the
effects could not be peneralized to devices implemented in
the latest Deep Sub Micron (DSM) technologies, where
leakage currents dominate. In addition, no research has been
carried out on the development of custom reconfigurable
architectures implemented at transistor level hence enabling
the implementation of both analogue and digital circuits.

This paper presents a framework for the development of
radiation tolerant mixed analogue and digital circuits on a
DSM reconfigurable CMOS device. Experiments are carried
out in which the device is subjected to various radiation
dosages, using an X-ray based radiation source, and the
performance of the device is tested by mapping a number of
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Figure 1: FPTA 2 architecture (teft) and schematic of cell transistor array (right). The cell

functional circuits. When the device fails any of the tests, an
evolutionary algorithm is used to recover the functionality
of the device where possible.

The rest of this paper is structured as follows: Section 2
describes the Field Programmable Transistor Array (FPTA)
device architecture. Section 3 describes the procedure
followed during radiation tests. Section 4 describes the
overall system architecture which includes the daia
acqguisition system. Section 5 provides an analysis of results
obtained. Finally, the main conclusions of the work are
listed in section 6.

2. FPTA ARCHITECTURE

The FPTA is an evolution-oriented reconfigurable
architecture (EORA). Important characteristics needed by
evolution-oriented devices are total accessibility, needed in
order to provide evolutionary algorithms the flexibility of
testing in hardware any chroemosomal arrangements, some
of which may be dangerous for existing commercial devices
(may lead to internal bus allocation conflicts and burn the
chip) and thus forbidden, gramularity at low level (here
transistor) allowing evolution to choose/construct the most
suitable building block for certain system, and
transparency, which enables users to have access to internal
device information, etc.

The FPTA has a configurable granularity at the transistor
level. It can map analog, digital and mixed signal circuits,
The architecture is cellular, with each cell having a set of
transistors, which can be interconnected by other
“configuration transistors™. For brevity, the “configuration
transistors” are called switches. However, unlike
conventional switches, these can be controlled for partial
opening, with appropriate voltage control on the gates, thus
allowing for transistor-resistor type topologies.

The architecture of the FPTA consists of an 8x8 array of re-
configurable cells. Each cell has a transistor array as well as
a set of programmable resources, including programmable
resistors and static capacitors. Figure 1 provides a broad
view of the chip architecture together with a detailed view
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contains additional capacitors and programmable resistors (not shown).
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of the reconfigurable transistor array cell. The re-
configurable circuitry consists of 14 transistors connected
through 44 switches, The re-configurable circuitry is able to
implement different building blocks for analog processing,
such as two and three stages OpAmps, logarithmic photo
detectors, or Gaussian computational circuits. It includes
three capacitors, Cm1, Cm2 and Cc, of 100fF, 100{F and
5pF respectively. Control signals come on the 9-bit address
bus and 16-bit data bus, and access each individual cell
providing the addressing mechanism for downloading the
bit-string configuration of each cell. A total of ~5000 bits is
used to program the whole chip. The patiern of
interconnection between cells is similar to the one used in
commercial FPGAs: each cell interconnects with its north,
south, east and west neighbors. This is the first mixed-signal
programmable array, FPMA, in the sense that its cells can
be configured as both analog and digital circuitry; with its
64 cells it can configure more Operational Amplifiers
(OpAmps) than the largest commercial Field Programmable
Analog Array (FPAA) chip (which contains only 20
OpAmps) [21].

3. EXPERIMENTAL PROCEDURE

The radiation source used was an electron beams obtained
from a dynamitron accelerator, The electrons are accelerated
at an energy of 1 MeV in a small vacuum chamber with a
beam of 8". The fluxes in the small chamber was 4.E9
[e/(s.cm2)] which is around 300 rad/sec.

The procedure for exposure to radiation, test, and recovery
was as follows; 4 different samples of the FPTA chip were
exposed to radiatton at & time. Two of the samples were
under electronic bias {chip Bl and chip B2), whereas, the
other two remained un-biased (chip Ul and chip U2). Due
to space limitations in the chamber, only two chips could be
radiated at a given time, so the biased and un-biased sets
were alternated under the same radiation dose.

Both the biased and un-biased sets were exposed to
radiation doses ranging from 0 to 350Krad at 50Krad steps.
Figure 2 illustrates the incremental radiation profile to
which the chips were subjected to over a period of 7 days.
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Figure 2: Cumulative radiation and experimental schedule.

After each radiation step both biased and un-biased sets
were tested by downloading the configuration for the
following tests/circuits respectively: identity test, rectifier
circuit, Tunable filter and 4-bit D/A converter circuit.

The identity test is specially designed to test the switching
elements, i.e. transmission gates, within the FPTA. It
operates by propagating a sinusoidal signal to the output
through exercising the correct set of transmission gates
within the FPTA. The rectifier, tunable filter, and the 4-bit
D/A converter are examples of relatively large macro blocks
of the FPTA which are utilized within sensor interfacing
circuitry.

4. SYSTEM ARCHITECTURE

A complete stand-alone board-level evolvable system
{SABLES) is built by integrating the FPTA and a DSP
implementing the Evolutionary recovery algorithm, as
shown in Figure 3. The system is connected to the PC only
for the purpose of receiving specifications and
communicating back the result of evolution for analysis.
The system fits in a box 8" x §” x 3”. Communication
between DSP and FPTA is very fast with a 32-bit bus
operating at 7.5MHz. The FPTA can be attached to a Zif
socket attached to a metal electronics board to perform
extreme temperature and radiation experiments The
evaluation time depends on the tests performed on the
circuit. Many of the tests attempted here require less than
two milliseconds per individual, and runs of populations of
100 to 200 generations require only 20 seconds.

Figure 3: Complete System Architecture.

5. RESULTS

Tables 1-4 illustrate results of radiation tests for dosages of
100Krad, 175Krad, 250Krad, and 350Krad respectively.
Each table illustrates the experimental results with the
various tests described in section 3 using both biased and
un-biased test chip samples. The X symbol indicates the
failure of the specific test with the corresponding chip,
whereas V indicates its success. The elliptical shapes
highlight a successful recovery through evolution. On the
other hand a triangular shape indicates that the recovery was
unable to obtain an acceptable output for the particular test.
For each test any noticeable change in the behavior of
input/output signals are reported. For example in table 1, U2
sample initially suffers a 50% drop in amplitude after
reaching an accumulative dosage of 100krad (Half-wave
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rectifier). This is later recovered through evolution in 311
generations.

After a total dose of 100Krad a number of sampie chips
suffered from some distortion in the shape of the output
waveform. This is mainly observed as a drop in amplitude
of the signal. When evolutionary recovery is triggeted most
of these distortions are overcome and the true functionality
is obtained. However, it must be noted in some cases that
the fitness threshold in the evolutionary algorithm may
require adjustment. This can be clearly seen when
performing identity checks on the sample chip B2, where
the fitness is adjusted from 4500 to 6000 (Table 1).
Although the resulting sine wave has a slight clip on the
rising edge, this is small enough not to distort the output
waveform which is very similar to that applied on the mput.

It could be noted form the table 1 that the un-biased chip Ul
starts to malfunction at 100Krad with most tests failing
drastically such that recovery is not possible.

Table 1: Experimental results at 100kRads on chip samples un-bias U1, U2 and bias B1 and B2.
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Table 2: Experimental results at 175 kRads. _
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As the radiation dosage is increased to 175 Krad, the
distortion on the output increases. For example, the rectifier
for both Bl and B2 passes the mput unchanged. However,
in almost all cases the evolutionary recovery system is able
to correct the output to the required shape. Figure 4(a)
illustrates the response of the rectifier at 50krad on the
sample Bl chip. After exposure lo radiation of up to
175Krad the rectifier malfunctions as the output response is
identical to that of the input shown on Figure 4(b}. When
the evolutionary mechanism is activated, the correct output
response is retained as shown in Figure 4(c).

As the dosage is increased to 250Krad (Tabie 3), cases
appear where the evolutionary algorithm is unable to
recover the correct functionality on the output (discarding
Ul due to its inconsistent behavior). However, in most cases
recovery is achieved. Again considering the rectifier circuit
at 250krad as illustrated in Figure 5(a), the output response

is clearly distorted due to radiation. However, the comrect
output Tesponse is recovered once the evolutionary
mechanism takes over, even though the final circuit suffers
from some non-ideal behavior when the output is low.

As the dosage reaches 350 Krad (Table 4), there is a clear
failure pattern with all tests, with the evolutionary algorithm
unable to recover any of the required functionality.
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Figure 4; Response of the Rectifier circuit at (a} 50kRads, (b) after being radiated to 175kRads resulting in deterioration
through loss of rectification, followed by {c) recovery through Evolution.
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Figure 6 demonstrates another example of recovery through
evolution using the example of the 4-bit DAC circuit. Figure
6(a) illustrates a correct functioning DAC at 100Krad. When
radiation dosage is increased to 175Krad, the circuit
malfunctions with clear loss in discrimination between

2454

various input values. This is associated with a loss in the
monotonic nature of the response, see Figure 6(b). When
evolution is activated the response is recovered, however, as
could be seen from Figure 6(c) there is some deterioration in
the signal level.
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Table 4: Results with 350kRads.
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6. CONCLUSIONS faults. Experiments were carried out which exercised the

reconfigurable device up to 350Krad radiation dosages

The paper has presented a mechanism for adapting a mixed  demonstrating that the technique is able to recover
analogue reconfigurable platform under total dose radiation
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functionality of blocks such as analogue to digital converters
up to 250Krad radiation dosage.
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